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Content

Lead of cross-industry EFSPI Subgroup Special Interest Group (SIG) since 2018.
The SIG activities generally has resulted in various collaborative research efforts.

E.g., Recently, two papers by I. Lipkovich, B. Ratitch, A. Dmitrienko & D. Svensson

* Updates of a seminal subgroup detection paper [1] 2016: Statistics

Tutorial in Biostatistics
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Tutorial in biostatistics: data-driven

subgroup identification and analysis in
clinical trials

Tlya Lipkovich,**7 Alex Dmitrienko® and Ralph B. D’Agostino Sr.°

* New papers 2023/2024: [2],[3] overview of developments since that time (+ some benchmarking)

https://arxiv.org/abs/2311.14889

Today: some shapshots of this work, (selected aspects only)

Some keywords: Causal Inference, Machine Learning [ML], Individual Treatment Effects



A short detour: Al

Strong and broad focus on Al across many domains. Expect proposals to use it
everywhere! What about Subgroup Detection // Individual Treatment Effects?

* Can a machine learn automatically who responds better to active treatment (by examples)?
Al (often vast neural nets) excels when

(1) data is cheap, [chess! Images! Text on the web! ...]

(2) the ground truth available in training data [cats!? won/lost games?, words, ...

WE DON’T HAVE THIS in RCT/RWE data, especially not (2) for fundamental reasons.

e But can we ‘almost do Al’ for finding novel subgroups? Let’s have a look...



Rubin’s Potential Outcome framework:

Each patient has two Potential Outcomes of Y, i.e., Y(© and Y1) corresponding to Trt=0, 1

* Only one of them is observed in a trial (parallel design)

e |l.e., ITE = YA-YO) is fundamentally unobservable (“no ground truth in the training data”)

Target becomes A(x) := E[Y(1)- YO | X=x], where x=(x,,...,x,) is baseline biomarkers.

This is CATE (Conditional Average Treatment Effect), ... target in many recent papers ...



Stressing

CATE: ... for a patient represented by these covariates

A(x) := E[YW-YO|X=x] as a (multivariate) function of x=(x,...,x,)

Expected (individual) trt. Effect ...

Representing an agnostic look at the data “Al style” (Let The Data Speak)

* Do (at least) some types of patients benefit? If so, can we figure out what is typical about them?

From CATE estimates to Subgroup: §={ﬁ(x) >0}  (='the patients benefitting

more from active treatment’).

Interestingly, other industries look at such problems [7] .... (based on Machine Learning).

s * ‘Who is more likely to respond to a personalized ad, new policy in society, etc”



We benchmarked some approaches ...

CATE Estimator

ML type/Base Learner

Outcome model?

T-Learning XGboost Yes
S-Learning Xgboost Yes
X-Learning Xgboost Yes
R-Learning Xgboost Hybrid
Causal Forest Causal trees No
Bayesian Forest BART No
A-Learning Xgboost No
A-Learning Augmented Xgboost Hybrid
W-Learning Xgboost No
W-Learning Augmented Xgboost Hybrid




Modelling School no. 1: ‘Indirect approach’

Vi

» _y . .
cate esumator 1 Predictions first, in ‘data science style

T-Learning
S-Learning A(X) = E[Y(l)' Y(O) | sz] =
X-Learning = E[Y(l) | sz] - E[Y(O) I X=X]

=E[Y|X=x, Trt=1] - E[Y|X=x, Trt=0]

E.g., A(x) =i, (%) - iy (x)

l.e., first outcome modelling (using off-the-shelf ML),

only then derive CATE




Modelling School no. 2: ¢ Direct approach’

e ———— Not interested in predicting Y, just give us the contrasts

Set up a suitable loss function L expressed in terms of Y,
Trt and x and a candidate f(x)

f = argmingsecy(L(Y, Trt, x; f)) renders A(x)

f can be constructed using off-the-shelf ML

A-Learning La(f) = %Z M(Y:, {(T: +1)/2 — w(x:) } < f(x:))
i=1
W-Learning No |
1 MYLT x f(x))
Iw() =0 Tt 2 (A=T0/2

i=1




Modelling School no. 2b: ‘Direct approach but /...J

CATE Estimator “oops high variance, let’s help it a bit...”:

f = argminggecy(L(Y, Trt, x; f)) renders A(x)
but now Hybrid

R-Learning

(=sneaking in outcome modelling as a nuisance
parameter, cross-fitting, etc)

Still using off-the-shelf ML.

Nie Wager 2020 [4]:

A-Learning Augmented

R2

W-Learning Augmented R1
i A L A AN A ’
A(x) = argmingecy (;Z,; (Yi —mtt ) — (TI- — gt )f(xi))

R1= Residuals: (Outcome — Outcome.model) (“#il"" = cross-fitted prognostic model) R2= Residuals: (Treatment — Treatment.propensity.model) (“#'~%* = cross-fitted prop.scores)




Modelling School no. 3: ¢ Tailormade for CATE’

Modified versions of standard machine learning
(e.g., such as RandomForest) to targeting A(x)
instead of Y (i.e., no off-the-shelf ML)

E.g., Causal Forest = popular approach,

Biomarker splits trying to capture differential effects...

Causal Forest

Bayesian Forest

Sometimes stated ‘honest’ (unbiased)
due to separation of data (for biomarker splits,
estimation).
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Simulation Landscape: S1-S4 (“making it difficult’’)

Simulation No. Prognostic x  Trial Type TRT assignment Predictive x
S1 few RCT 3:1 rand (more active) X3, x4
S2 many RCT 3:1 rand (more active) X3, x4
S3 many Observational Prognostic assignment (=1:3) X3, x4
S4 many Observational Predictive assignment (=1:3) X3, x4

S3: mimicking a physician who assigns patients to Active if their SOC prognosis is poor, i.e., true propensities are driven by the prognostic part of the model for Y, and for S4 the predictive part drivs.

Y=continuous. 19 candidate baseline x

1 TRUE CATE
(Individual Trt. Effect)
depends on x; and x,,

True Treatment Effects? ‘

* non-linear, non-monotone ‘
the ligher color=higher effect

X4

1)
)




Estimated (CATE)
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Illustration One Iteration (S2): Bias-Variance Trade-off

Very different performance noted across methods, e.g., watch this

individual o loess smoother line of identity
-05 0.0 05 10 -0.5 00 05 1.0
| 1 | | | ] 1 ] | | ] | 1 ] | | ] | ] |
T-learner(XGboost) X-learner(XGboost) R-learner(XGboost) CausalForest BayesianCausalForest

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

Simulation Truth (CATE)

NOTE T-Learning=> Low Bias High Variance, Note Causal Forest High Bias (=hard shrinkage), Low Variance
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Each point= averaged
performance over 100
simulation iterations

51

ATE(S)

0.5 —
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Vertical dashed line =

True Eff in true subgroup S={CATE>0}
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Selected results:

Mostly
optimistic
results, i.e.,

Claim>Actual

ATE(S)

1.5

1.0

0.5

0.0

Scenaric Method corr(AA) agree(S.5) ATE(S) ATE(S) SE{ATE(S)] bas{ATE(S)} n
51 T 067 0.50 058 032 0062 026 0.162
81 8 073 0.53 0.37 034 0063 0.02 0.176
SI R 070 0.49 0.40 030 0081 0.10 0.161
SN mY N @~
o o o O o O o o
Lo
S1 52
15 line of identity (Unbiased)
O

| 5 .:. i E.g., T-learning (Biased)
] ] &
: : : +
| 5 " _#ll Note Causal Forest (version
' ' . for observational-data )
: : = 8| Was off-the-chart in S3
: | n
o I I A A
| T W a Truncated axes:
| 'é | A and W missing in
@_}: ! 4 T action (far out .. )
» : ' |
;;;;;;;; o E iNocIearwinner? |
o 0 o O O O O O

FIGURE 10 Average treatment effect (ATE) in identified subgroups by different methods across 4 scenarios (100 simulations);
Y-axis displays the estimated ATE in the estimated subgroup §(X) = {K(X) > 0} vs the true treatment effect in Ky (X-axis).
Vertical dotted line marks expected average effect in the true subgroup S(X) = [A(X) = 0}, Notably CF gave quite spurious
results in scenario 85 with every estimate below zero by a margin (hence it is off chart). The plot is truncated and does not
display grossly outlying results for the none-augmented A-learning and W-learning across all scenarios



Default

Causal Forest

i This page: one iteration S3 scenario (Observational Data). |
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FIGURE 9 Benchmarking over 100 iterations for each scenario; plotting the subgroup ufility index (n metric) against the Ea Ch pOI nt:

Pearson correlation between estimated and trie CATE. Methods producing high values on both metrics (which are highly avera ed over
Or( t e o o related) indicate good ability to recover underlying CATE as well as the subgroup of patienis truly benefitting from the active g
treatment. The horizontal dotted line indicates the theoretically largest attainable value of the metric n = 0.22. 100 ite rati ons
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FIGURE 11 The agreement between the true S(X) = [A(X) > 0} and identified subgroup measured by the Jaccard coefficient
16 vs. Pearson correlation between the true A(X) and estimated CATE
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Summary

No clear winning method in our benchmarking; some looked more solid than others.

- The difficulties reflects how inherently hard Subgroup Discovery is
Large differences in Bias-Variance tradeoffs across methods.
Peculiar results with Causal Forest and A-Learning/Weighting Methods sometimes.

Plenty of scope for further research.

THANK YOU
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Example of recent CATE approach: R-learning

Example of f = argmingecy(L(Y,Trt, x; f)) renders A(x) i.e., estimates CATE:

Nie Wager 2020 [4]:
R1 R2

2
A(x) = argmm{fec}( % (Y — "{ ‘}) (T l})f(x )

R1= Residuals: (Outcome — Outcome.model) (”r?l{‘i}" = cross-fitted prognostic model) R2= Residuals: (Treatment — Treatment.propensity.model) (”ﬁ{‘i}” = cross-fitted prop.scores)

1 2
Possible to rewrite expression to —%; (Wl- (Y — f(xl)) ) with Y;" a ‘modified outcome’,

and weights =residual trt-propensities.

e Off-the-shelf “standard” XGBOOST can estimate this (squared Loss & weights).
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A regression tree

x<a

V1

Y2

Slide kindly shared by Stefan Franzén (AstraZeneca)

Treatment effect heterogeneity — a practical example [PS12022]
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Slide kindly shared by Stefan Franzén (AstraZeneca)

A Caus al tree Treatment effect heterogeneity — a practical example [PSI12022]
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